A Borsuk-Ulam type generalization of the Leray-Schauder fixed point theorem and applications

Anatoliy K. Prykarpatsky^(1,2) and Denis L. Blackmore⁽³⁾

 $^{(1)}$ The Dept. of Applied Mathematics at the AGH University of Science and Technology, Kraków 30059, Poland

⁽²⁾ The Ivan Franko State Pedagogical University, Drohobych, Lviv region, Ukraine

⁽³⁾ The Dept. of Mathematical Sciences, New Jersey Institute of Technology, NJ 07102, USA

The classical Leray-Schauder fixed point theorem and its diverse versions [1, 2, 3]in infinite-dimensional both Banach and Frechet spaces have many very important applications in modern applied analysis. Our report is devoted to the operator equation Ax = f(x), where $A : E_1 \to E_2$ is some closed surjective linear operator from Banach space E_1 into Banach space E_2 , defined on a domain $D(A) \subset E_1$, and $f : E_1 \to E_2$ is some, in general, nonlinear continuous mapping, whose domain $D(f) \subset D(A) \cap S_r(0)$, with $S_r(0) \subset E_1$ being the sphere of radius $r \in \mathbb{R}_+$ centered at zero. Concerning the mapping $f : E_1 \to E_2$ we will assume that it is \hat{a} -compact. Assume that a mapping $f : E_1 \to E_2$ satisfies the following conditions: 1) the domain $D(f) = D(A) \cap S_r(0)$; 2) the mapping $f : D(f) \to E_2$ is A - compact; 3) there holds a bounded constant $k_f > 0$, such that $\sup_{y \in S_r(0)} \frac{1}{r} ||f(y)||_2 := k_f$,

where a linear operator $A: E_1 \to E_2$ is taken closed and surjective with the domain $D(A) \subset E_1$. The domain D(A) is not necessary to be dense in E_1 . Let now $\tilde{E}_1 := E_1/Ker A$ and $p_1: E_1 \to \tilde{E}_1$ be the corresponding projection. The induced mapping $\tilde{A}: \tilde{E}_1 \to E_2$ with the domain $D(\tilde{A}) := p_1(D(A))$ is defined as usual, that is for any $x \in D(A)$, $p_1(x) \in D(\tilde{A})$ there holds \tilde{A} $(p_1(x)) := A x$. It is a well known fact that the mapping $\tilde{A}: \tilde{E}_1 \to E_2$ is invertible and its norm is calculated as $k_A^{-1} := \sup_{\|y\|_2 = 1} \left\| \tilde{A}^{-1}(y) \right\| = \sup_{\|y\|_2 = 1} \inf_{x \in E_1} \{ \|x\|_1 : Ax = y \}$, where we denoted by

 $\|\cdot\|_1$ and $\|\cdot\|_2$ the corresponding norms in spaces E_1 and E_2 . Then the following characteristic theorem holds.

Theorem. Assume that the dimension dim Ker $A \ge 1$, and the condition $k_f < k_A$ holds; then the quation Ax = f(x), possesses on the sphere $S_r(0) \subset E_1$ the nonempty solution set $N(A; f) \subset E_1$, whose topological dimension dim $N(A; f) \ge \dim Ker A - 1$.

Literatura

- Andres J., Gorniewicz L. Topological fixed point principles for boundary value problems. Kluwer Academic publishers, 2003
- [2] Gelman B.D. The Borsuk-Ulam theorem in infinite-dimensional Banach spaces. Mathematical Sbornik, 103, N1 (2002) p. 83-92 (in Russian)
- [3] Goebel K., Kirk W.A. and other (Editors) Topics in metric fixed point theory. Cambridge University Press, 1990

Autor kontaktowy: Anatoliy K. Prykarpatsky Adres e-mail autora kontaktowego: pryk.anat@ua.fm

Autor referujący: Anatoliy K. Prykarpatsky